
To cuojÄM.. {<]qg lEtt Iv-ti W*

_u

I

^ *

Decision Problems Related to Structural Induction for
Rings of Petri Nets with Fairness*

Jianan Li f Ichiro Suzuki | Masafumi Yamashita j
{Department of Electrical Engineering and Computer Science

University of Wisconsin-Milwaukee, Milwaukee, WI 53201, U.S.A.
JDepartment of Electrical Engineering, Faculty of Engineering

Hiroshima University, Higashi-Hiroshima 724, Japan

Abstract Structural induction is a technique for prov-
ing that a system consisting of many identical components
works correctly regardless of the actual number of compo-
nents it has. Previously the authors have obtained con-
ditions under which structural induction goes through for
rings that are modeled as a Petri net satisfying a fairness
requirement. The conditions guarantee that for some k,
all rings of size k or greater exhibit "similar" behavior.
The key concept is the similarity between rings, where
rings Rk and Rl of sizes k and i, respectively, are said
to be similar if, intuitively, (1) none of the components in
either ring can tell whether it is in Rk or RL, and (2) none
of the components (except possibly one) can tell its posi-
tion within the ring to which it belongs. A ring satisfying
this second property is said to be uniform. In this pa-
per we prove the undecidability of various basic questions
regarding similarity and uniformity. Some of the ques-
tions shown to be undecidable are: (1) Is there k such
that Rk and Rk+1 are similar? (2) Is there k such that
all rings of size k or greater are mutually similar? (3) Is
there k such that Rk is uniform? (4) Is there k such that
Rk, Rk+1, Rk+2,... are all uniform?

1 Introduction

Given a system consisting of many identical finite state
components that are connected in some regular topology,
how can we determine whether it works correctly regard-
less of the actual number of components it has? Conven-
tional theorem provers based on state-space search cannot
be used directly to answer this question, since infinitely
many instances of the system are involved. In fact, this
problem is known to be unsolvable in general, even if the
topology of the system is a unidirectional ring [1] [10].
The works reported in [2] [3] [5] [6] [7] [13] are some of the
efforts to find a sufficient condition for such a system to
be correct regardless of the number of components.

"This work was supported in part by the National Science Foun-
dation under grants CCR-9004346 and IRI-9307506, the Office of
Naval Research under grant N00014-94-1-0284, and an endowed
chair (KIFUKOZA) supported by Hitachi Ltd. at Faculty of En-
gineering Science, Osaka University.

19950728 023

Inspired by [5] [13], the authors have considered the
analysis problem stated above for rings of identical corn
ponents given as a Petri net satisfying a fairness require
ment, and obtained structural induction theorems that
can be used to formally infer the correctness of a ring of
any large size from the correctness of a ring having only a
few components [6] [7]. Petri nets (see, for example, [9])
are widely used for modeling and analysis of concurrent
processing systems. Fairness is an important property of
concurrent systems often studied in the context of tempo-
ral logic [8]. The combination of Petri nets and temporal
logic has been found to be extremely useful for formal
analysis of such systems [4] [11] [12].

One of the key concepts in the authors' induction the-
orems is the "similarity" between two rings. For k >
2, let Rk be the ring consisting of k identical copies
Co, Ci,..., Ck-i of a component C. We assume that all
components except possibly Co have the same initial state.
Intuitively, we say that rings Rk and Rl are similar if (1)
none of the components in either ring can tell whether
it is in Rk or Rl, and (2) none of the components (ex-
cept possibly Co) can tell its position within the ring to
which it belongs. (A ring satisfying this second property
is said to be uniform.) The induction theorems reported
in [6] [7] provide sufficient conditions for all rings of size k
or greater to be mutually similar for some k. Note that
if Rk is correct in some sense and all rings of size k or
greater are mutually similar, then we can conclude that
Rl is correct for all I > k. The theorems have been applied
to the formal analysis of token-passing mutual exclusion.
a simple producer-consumers system, and demand-driven

token-circulation.
The goal of this paper is to prove the undecidability

of the following basic questions regarding similarity and
uniformity (as well as "weak similarity" defined later):

1. Is there k such that Rk and Rk+1 are similar?

2. Is there k such that all rings of size k or greater are
mutually similar?

3. Is there k > 3 such that Rk is uniform?

4. Are R3, ß4,... all uniform?

DTIf QUALITY INSPECTED 8

5. Is there k > 3 such that Rk, Rk+1, Rk+2,... are all

uniform?

These negative results might seem somewhat expected in
view of the results in [1] [10] and the undecidability re-
sults reported in [13] regarding the existence of "network
invariants" that are needed for carrying out induction.
However, similarity and uniformity of rings are stronger
requirements than the existence of network invariants,
and hence the proofs of the undecidability results reported
here require certain unique arguments.

As is noted in [13] for the invariant method, despite
these negative results we still expect that for many inter-
esting, practical ring systems, the induction theorems of
[6] [7] can be an effective tool for formal analysis.

The rest of the paper is organized as follows. Section 2
reviews the basic terminology of Petri nets. Section 3
introduces the basic concepts regarding components and
rings. In Section 4 we introduce similarity and related
concepts. The undecidability results are presented in Sec-
tion 5. The concluding remarks are found in Section 6.

2 Petri Nets

We review the standard terminology of Petri nets [9].

A Petri net is a directed graph with two types of nodes,
called transitions and places, and weighted arcs from a
node of one type to a node of the other type. Formally, it
is given as a triple N = {P,T, F), where P is a finite set
of places, T is a finite set of transitions, and F : (P x T) U
(TxP) -» {0,1,2,...} is a weight function. A place p G P
is called an input place (or output place) of a transition
t G T if F(p,t) > 1 (or F(t,p) > 1). Any function M :
p _► {0,1,2,...} is called a marking. A place p is said to
have M(p) tokens at a marking M. A transition t G T is
said to be firable at M iff M(p) > F(p, t) for every p G P.
If t is Arable at M, then it may fire and yield another
marking M' such that M'(p) = M(p) - F(p,t) + F{t,p)
for every p G P. We denote this by M —►, M'. This
relation is extended by

1. M M and

2. M -*ai M' iff there exists M" such that M -►« M"

and M" -►« M'

for all M, M', a G T* and t G T.1 If M -»« M' then M'
is said to be reachable from M by a finite firing sequence
a. L(N, M) denotes the set of all finite firing sequences
from M. An infinite sequence a G Tw is an infinite firing
sequence from M if ß G L(N, M) for every finite prefix ß

1T* and T" denote, respectively, the set of finite sequences and
the set of infinite sequences of the elements of T. A is the empty
sequence.

of a. We denote by LW(N, M) the set of infinite firing se-

quences from M. Let L~(W, M) = L{N, M) U LU(N, M)
denote the set of all (both finite and infinite) firing se-
quences from M. Usually an initial marking is associated

with a Petri net.
We draw a Petri net using a circle and a square to

represent places and transitions, respectively. An arc with
weight F(p,t) (or F{t,p)) is drawn from p to t (or from t
to p) if F(p, t) > 1 (or F(t,p) > 1). The weight is omitted
if it is 1. A marking M is represented by drawing M(p)
dots in (the circle representing) p.

When describing a system using a Petri net N =
(P, T, F), we may designate a subset V C T of transitions
such that every transition t G V must be fired fairly, i.e.,
if t becomes firable infinitely often, then it must fire in-
finitely often. Furthermore, to examine whether net N
with initial marking M has certain liveness or eventuality-
properties (e.g., "if ti fires then eventually i2 fires"), we
may only be interested in those firing sequences a that are
either infinite, or finite and terminating in the sense that
there is no transition t such that at G L(N,M). This
observation leads us to use the set C(N, M, T') defined
below to examine the behavior of N: C(N,M,T') is the
set of all firing sequences a G Lco(N, M) such that either

1. a is infinite and satisfies the fairness requirement on

the transitions in T", or

2. a is finite and terminating.

3 Components and Rings

To save space, we introduce the necessary concepts infor-
mally, using examples. The reader is referred to [6] [7] for
a formal discussion.

A component is a Petri net C = (P, T, F) in which the
set T of transitions can be partitioned into three groups,
the left interface transitions, the internal transitions and
the right interface transitions, where the number of left
interface transitions must equal the number of right in-
terface transitions. See Figure 1(a) for an example of a
component having two left interface transitions u\ and
«2, three internal transitions Vi, v2 and v3, and two right
interface transitions wi and w2- We connect two or more |
copies of C to form a ring, as shown in Figure 1(b), by \
merging the respective interface transitions of adjacent v
copies of C. For any k > 2, the ring consisting of k copies
of C is denoted Rk, and the copies of C in Rk are referred
to as Co, Ci, ..., Cfc-i, where Ci+1 is the right neighbor
of C{. (Subscripts are taken modulo k when we discuss
Rk). Formally, the transitions and places of C must be re-
named in each d (e.g., v2 of C\ might be renamed •ivli2

y

in the example given above) so that they all have distinct
names in Rk. However, for convenience, in Figure 1(b)

Dist

H
bpccial

(a) (b)

Figure 1: (a) Component C. (b) Ring R3 consisting of three copies of C.

we use their original names in each copy of C, and thus
assign two names to every interface transition.

We assume that for all k > 2, the initial marking Mk

of Rk is such that for some fixed markings M and M' of
C, Co has M and all other C,-'s, i > 1, have M'. (It is
often necessary to break symmetry by giving Co an ini-
tial marking different from that of the other components.)
Furthermore, we assume that for all k > 2, fairness (when
required) should be imposed on an identical set of transi-

tions in all components of Rk.
In the following, sets L°°(Rk,Mk) and C(Rk,Mk,Tk)

are simply written as Lco(k) and C(k), respectively, where
Tk the set of transitions of Rk (consisting of identical
selections from all components) on which fairness is re-

quired.
Let a G L°°(k) be a firing sequence of Rk. Let d be

a component in Rk. We define the local history of C* in
a, denoted ((d))a, to be the sequence obtained from a
by deleting all transitions except those that belong to C,-.
Here, a transition t belongs to d iff t is either a left inter-
face transition, a right interface transition, or an internal
transition of C,-. (So, an interface transition between C,-
and C,+i belongs to both d and C,+i.) Sequence {{d))a

is thus the portion of a that occurs in d.
As we mentioned above, formally in Rk the transitions

(and places) are renamed so that all transitions have dis-

tinct names. Therefore, to be able to compare local his-
tories of different components (that may even belong to
different rings Rk and Rl), when describing {{d}}a we
use the original transition names given in C, rather than
the names in Rk after the renaming (e.g., use "v2" instead
of "111,2" when describing ((Ci))0).

Example 1 Consider ring R3 shown in Figure 1(b). Sup-
pose that in the initial marking, only Co has a token,
in place pi, as shown in the figure. Consider the fir-
ing sequence a that moves the token through C\ and
C2 and back to Co, as indicated by the dashed arrow
in Figure 1(b). Then the local history of C\ in a is

((C\)) = UiV\W\W2U2- Similarly, the reader can verify

(ico))a = v1w1w2 and ((C2))a = Uiv1v2u2. O

Let M be a marking of Rk. The firability of an interface
transition t of d at M is determined by the token counts
of the input places of t, and such places may belong to
C_i, d or d+\. We define the firability vector of C,
at M to be a column vector of token counts of all input
places (in C-i, C; and C;+1) of all interface transitions of
d. (The order in which the token counts of these places
appear must be the same for all components.)

Let a be a firing sequence of Rk. Note that during the
execution of a, a firing of a transition in C,-_i, C, and
C;+i may change the firability vector of C,-. To describe
the changes in the firability vector of d in <*, we now
define the extended local history of C, in a, denoted (C;)a,
as follows: {d)a is obtained from ((d))a by inserting the
firability vector of C,- at the corresponding positions each
time it changes. Again, instead of a formal definition we
give an example.

Example 2 Consider firing sequence a discussed in the
previous example. The reader can verify that the ex-
tended local history (Ci)a of Ci in a is

0 1 0 0 0 0 Ü u
0
0

0
0 «1

0
0 Vl

0
1

W\
0
0

0
0

w2
1
0

u2
0
0

0 0 0 0 0 1 0 0

where the vectors show, in the following order, the token
counts of p2 °f Co (the input place of «i of Ci), P3 of C\
(the input place of u2 of Ci), p2 of C\ (the input place of
w\ of Ci), and p3 of C2 (the input place of w2 of C\). □

Intuitively, ((d))a describes not only which transitions
of d fire, but also how the "environment" of d changes in
a in terms of the firability of its interface transitions. Of
course, if ((d))a = ((d))ß for firing sequences a and ß.
then d cannot distinguish a and ß. On the other hand.
the information on the behavior of the "environment" of
d is not included in local histories (C,)a and (d)ß-

4 Similarity and Uniformity

We now review the main concepts introduced in [6] [7]
for stating the induction theorems. Recall that C(k) and
£.(£) are the set of firing sequences of ring Rk and Rl,
respectively, that we use to determine their correctness.

Definition 1 [6] Two rings Rk and Rl are similar, de-

noted Rk ~Rl, if

1. {(G>» G £(*)} = {(Co» € C(t)} and

2. {(C}> G £(*)} = {(£,•» G £(*)} for any 1 <
i< k-l and 1 <j <t- 1.

Definition 2 [7] Two rings Rk and fl* are weakly simi-

lar, denoted Rk ~ Rl, if

1- {((Co» J« G C(k)} = {((Co» Ja € C(t)} and

2- {((G)» G £(*)} = {((Q)» G £(*)} for any
1 < i< k- 1 and 1 <j <i- 1.

Intuitively, if Rk ~ Ä*, then none of the copies of C
knows which of Rk and Rl it is in, and none of the copies
of C other than Co knows which copy of C it is. (Co might
behave differently from others, since its initial marking
may not be the same as that of others.) Weak similarity
is identical to similarity, except that the firability vectors
of components are not considered. By definition, Rk ~ Rl

implies Rk ~ Rl.
As is explained in [6] [7], one way to prove the correct-

ness of Rn for all values of n > k for some k is to show
that

1. Rk ~ Rk+1 ~ Rk+2 ~ • • •,

2. S C {((C0»Ja G C(k)} C S', where S and S' are
sets of firing sequences of C describing the correctness
requirements for Co, and

3. S" C {((Q»Ja G £(*)} C S'" for any one j,
1 < j < k - 1, where S" and S'" are sets of firing se-
quences of C describing the correctness requirements
for allC, i > 1.

Then Co's in all Rk,Rk+l,... have identical properties
and Co of Rk is correct. Thus Co is correct in all
Rk, Rk+1,.... Similarly, all C.-'s, i > 1, in all fifc,Äl+1,...
have identical properties and that particular Cj of Rk

(mentioned above) is correct. So all these C,'s in all
Rk,Rk+1,... are also correct. The main result in [6] is
a sufficient condition for R2 ~ R3 ~ Ä4 ~ • • • (hence

R2 ~ ß3 ~ Ä4 ~ ■ • ■) to hold, and [7] presents a suf-

ficient condition for Rk ~ ßA+1 ~ Äi+2 ~ • • • to hold
for the given k > 5. (We do not review these sufficient

conditions since doing so requires additional definitions.
The interested reader is referred to [6][7].) The concept
of "uniformity" introduced next is used to state the con-

dition in [7].

Definition 3 [7] Rk, k > 3, is uniform if {((C,»0|a G
C(k)} = {((Cj))Ja G £(*)} for any 1 < i,j < k- 1.

Note that if Rk is uniform, then none of the components
C\, C2, • • •, Ck-i can determine its position in the ring.

Example 3 We can show that the "environment" looks
identical to all C,-, i > 1, in any Rk, k > 3, constructed
from C of Figure 1(a). On the other hand, R2 and R3 are
slightly different. In R2, u>2 of C\ becomes Arable when
C\ fires «2, since its left and right neighbors are both
C0. This cannot happen in R?, since the left and right
neighbors of C\ are different. If we ignore the firability
vectors, of course, R2 and R3 become indistinguishable
to C\. Using an argument along this line, we can prove
R? + R? ~ RA , R? ~ R3 ~ R4 ~ ■ ■ ; and that R*
is uniform for all Ar > 3. o

In [6] [7], the argument outlined above has been used
to prove the correctness of rings for token-passing mu-
tual exclusion, a simple producer-consumers system, and
demand-driven token-circulation.

5 Undecidability Results

As we discussed in Section 4, similarity, weak similarity
and uniformity can be a basis for proving that a ring sys-
tem is correct regardless of its size. In this section we
prove that the basic questions regarding these concepts
posed in Section 1 are undecidable in general.

Theorem 1 Given C, M and M', the following ■problems
are undecidable in general, even if fairness is not required

on any transition.

1. Is there k such that Rk ~ Rk+1 ?

2. Is there k such that Rk ~ Rk+1 ?

3. Is there k such that Rk ~ Rk+1 ~ Rk+2 ?

4. Is there k such that Rk ~ Rk+1 ~ Rk+2 ~ • • ■?

Proof We first prove the second and fourth claims that
do not involve the changes in the firability vectors of the
components. The basic idea is to simulate the given Tur-
ing machine A (that does not halt in two steps) on the
semi-infinite blank tape for (up to) n steps using a uni-
form ring Rn of size n, in such a way that (1) if A halts

in n steps, then Rn ~ ßn+1 ~ Rn+2 ~ • ■ -, and (2) if A

never halts, then Rk %■ Rl for all k ^ I. In the sense that
we use Rn to simulate a Turing machine or a two-counter
automaton for n steps, the proof is similar to those found
in [10] and [14]. But here the proof is technically more
involved, since weak similarity is a fairly strong condition.

Given a Turing machine A, we construct a component
C and markings M and M' of C such that Rn simulates
the computation of A on the semi-infinite blank tape for
(up to) n steps. We will first describe the components
as a finite state machine, and then later explain how we
can represent them by a Petri net. Number the tape cells
0,1,... starting with the leftmost one. For each 0 < i <
n-l, Ci maintains cell i. Initially, the cells are all blank,
and Co has the tape head (i.e., the tape head is reading cell
0). The component that has the tape head also remembers
in its finite control the current state of A- To simulate a
single step of A, the component, say d, that currently
has the tape head (1) rewrites the symbol in cell i, (2)
determines the next state q of A, and then (3) sends q to
either C,_i or d+\ depending on whether the tape head
is moved left or right. The neighbor of C,- that receives
q knows that it now has the tape head and simulates the

next step of A.
To ensure that the simulation stops in n steps and we

do not run out of space (Rn has exactly n tape cells), we
use a flag COUNT (initially false) in each component and
two special symbols called NEWSTEP and EXECUTE in
the following manner. Intuitively, we set one COUNT in
the ring to true before each step of simulation. Specifi-
cally, suppose d wishes to simulate a step of A. If its
own COUNT is still false, then it sets COUNT to true
and sends EXECUTE to the right and waits for EXE-
CUTE to arrive from the left. If its own COUNT is true,
then it sends NEWSTEP to the right and waits for EXE-
CUTE to arrive from the left. In either case, d simulates
a step of A as described above when EXECUTE arrives.
A component that does not have the tape head always
passes EXECUTE to the right. A component that re-
ceives NEWSTEP for the first time (in this case COUNT
is still false) changes its COUNT to true and sends EXE-
CUTE (instead of NEWSTEP) to the right. A component
that receives NEWSTEP when its COUNT is true passes
NEWSTEP to the right.

The simulation ends when either (1) component C; that
has the tape head simulates one step of A and finds that
the next state is a halting state, or (2) Co receives either
NEWSTEP or a state of A from the left. In the first
case, A has halted within n steps, and d circulates a
special symbol HALT once around the ring and halts. In
the second case, A did not halt within n steps, and Co
circulates a special symbol SUSPEND once around the

ring and halts. In either case, the entire ring comes to a
halt after the circulation of HALT or SUSPEND.

Since each component has only a finite number of states,
constructing C as a Petri net is straightforward. Trans-
fers of various symbols (NEWSTEP, EXECUTE, HALT,
SUSPEND and a state of .4) can be represented by dif-
ferent interface transitions. The fact that initially Co has
the tape head can be reflected in its initial marking M
different from M' of other components. Fairness is not
imposed on any transition.

Now, we modify C slightly to make Rn uniform. That
is, before the simulation starts, we give any component
in Rn a chance to "act" as Co in the simulation. We
achieve this by letting (the real) Co nondeterministically
do one of the following: (1) start the simulation, (2) send

a token to the left through a special interface transition,
and (3) send a token to the right through another special
interface transition. A component that receives a token
through one of the special interface transitions can, non-
deterministically, either start the simulation acting as Co
(as described above) or simply pass the token to the neigh-
bor on the opposite side. This modification guarantees
that Rn is uniform. A side effect is that the simulation
of A may never start, but, this only adds two (identical)
sequences (one for each direction in which the token is
passed forever) to the sets of local histories of all C,-'s,
i > 1, and two sequences to the set of local histories of
Co- So whether or not two components have identical sets

of local histories is not affected.

Suppose that A never halts. Then for any n, (the com-
ponent acting as) Co of Rn receives EXECUTE exactly n
times. Thus for any distinct k and £, the two conditions
of Definition 2 do not hold, and hence Rk •/■ Rl.

Suppose that A halts within n > 3 steps. Then for any
k > n, in Rk, (the component acting as) Co and its n — 1
right neighbors (call them Ci,.. -, Cn-\ for convenience)
perform the actual simulation (the simulation itself does
not depend on the value of k) and each of Cn,..., Ck-i
simply pass EXECUTE n times. (In addition, all com-
ponents pass HALT once.) This, together with the fact
that all rings are uniform, implies that for any k,£ > n,
the two conditions of Definition 2 are satisfied, and hence
Rk ~ Rl. This completes the proof of the second and
fourth claims.

As for the first and third claims of the lemma, it is easy
to see that component C described above can be con-
structed in such a way that each interface transition t has
exactly one input place, say p, and once p receives a token
it loses the token only when t fires. Then given any fir-
ing sequence a of Rk, the changes in the firability vectors
during the execution of a can be determined completely.
So the conditions of Definition 1 are satisfied iff those of
Definition 2 are satisfied. Therefore the claims we made
on the relation between the behavior of A and weak sim-

ilarity among rings hold also for similarity among rings.
This completes the proof of the first and third claims. □

Now we discuss uniformity.

Theorem 2 Given C, M and M', the following problems
are undecidable in general, even if fairness is not required

on any transition.

1. Is there k > 3 such that Rk is uniform?

2. Are R?,RA,... all uniform?

3. Is there fc > 3 such that Rk, Rk+\ Rk+2,... are all

uniform ?

Proof We modify the construction given in the proof of
Theorem 1. Note that the real C0 can transfer its role as
the initiator of the simulation to other components, but
even after the transfer, it can still "remember" that it is
the real C0- So, when the real C0 receives SUSPEND,
(in addition to passing it as before) we let it fire a spe-
cial right interface transition. Then the local history of
the real C\ (the right neighbor of Co) becomes different
from those of any other component, since that interface
transition never fires at other components. So if A never
halts, then the special transition is always fired, and thus
Rn is not uniform for any n. On the other hand, if A
halts within n > 3 steps, then Rk is uniform for all k > n.
This completes the proof of the first claim. To prove the
second and third claims, all we need to do is to change
the behavior of the real Co so that it fires that special
right interface transition when it receives HALT, instead
of SUSPEND. Then if A halts in n > 3 steps, then Rk is
not uniform for any k > n. If on the other hand A never
halts, then that special transition is never fired, and thus
Rn is uniform for all n. This completes the proof of the
second and third claims. D

6 Concluding Remarks

Since any finite alphabet can be encoded as binary strings,
the negative results presented above remains true even if a
component has only four interface transitions on each side,
two for sending symbols and two for receiving symbols.
It would be interesting to investigate the decidability of
analogous problems for the case when the components
have exactly one interface transition on each side, and for
some restricted classes of Petri nets.

References

[2] E. M. Clarke, 0. Griimberg and M. C. Browne, "Rea-
soning about networks with many identical finite-
state processes," Proceedings of the 5th Annual ACM
Symposium on Principles of Distributed Computing,
Calgary, Alberta, Canada, August 1986, pp. 240-248.

[3] S. German and A. P. Sistla, "Reasoning about sys-
tems with many processes," Journal of the ACM 39,

No. 3, 1992, pp. 675-735.
[4] R. R. Howell, L. E. Rosier and H. C. Yen, "A

taxonomy of fairness and temporal logic problem

for Petri nets," in Proceedings of the 13th Sympo-
sium on Mathematical Foundations of Computer Sci-

ence 1988, Lecture Notes in Computer Science 324,
Springer-Verlag, New York, 1988.

[5] R. P. Kurshan and K. McMillan, "A structural induc-
tion theorem for processes," Proc. 8th ACM Symp.
Principles of Distributed Computing, Edmonton, Al-
berta, August 1989, pp. 239-247.

[6] J. Li, I. Suzuki and M. Yamashita, "Fair Petri nets
and structural induction for rings of processes," The-
oretical Computer Science, Vol. 135, 1994, pp. 377-
404.

[7] J. Li, I. Suzuki and M. Yamashita, "A new structural
induction theorem for rings of temporal Petri nets,''
IEEE Transactions on Software Engineering 20, No.
2, February 1994, pp. 115-126.

[8] Z. Manna and A. Pnueli, The Temporal Logic of
Reactive and Concurrent Systems, Springer-Verlag,
New York, 1992.

[9] T. Murata, "Petri nets: Properties, analysis and ap-
plications," Proceedings of the IEEE 77, No. 4, 1989,

pp. 541-580.
[10] I. Suzuki, "Proving properties of a ring of finite state

machines," Information Processing Letters 28, 1988,
pp. 213-214.

[11] I. Suzuki, "Formal analysis of the alternating bit pro-
tocol by temporal Petri nets," IEEE Transactions on
Software Engineering 16, No. 11, November 1990, pp.
1273-1281.

[12] I. Suzuki and H. Lu, "Temporal Petri nets and their
application to modeling and analysis of a handshake
daisy chain arbiter," IEEE Transactions on Comput-
ers 38, No. 5, 1989, pp. 696-704.

[13] P. Wolper and V. Lovinfosse, "Verifying properties
of large sets of processes with network invariants/'
in Automatic Verification Methods for Finite State
Systems, J. Sifakis (ed.), Lecture Notes in Computer
Science 407, Springer Verlag, 1990, pp. 68-80.

[14] P. Wolper, private communication.

[1] K. R. Apt and D. C. Kozen, "Limits for automatic
verification of finite-state concurrent systems," Infor-
mation Processing Letters 15, May 1986, pp. 307-309.

